Abstract

Ti-based Metal–organic frameworks (Ti-MOF) have been extensively investigated for producing hydrogen via solar water splitting, while their intrinsic activities are still retarded by the poor performance of photocarriers separation and utilization. Herein, a donor-acceptor (D-A) supramolecular photocatalyst is successfully constructed via encapsulating fullerene (C60) into MIL-125-NH2 and meanwhile depositing individual Pt atoms as cocatalyst. The as-prepared C60@MIL-125-NH2-Pt exhibits remarkable activity in photocatalytic water splitting, with a H2 formation rate of 1180 μmol g−1 h−1, which is ∼ 12 times higher than that of the pristine MIL-125-NH2. Further investigations indicate that the host-guest interactions between C60 and MIL-125-NH2 strengthen the built-in electric field, which greatly facilitates the separation and migration of photogenerated charge carriers. In addition, the cocatalyst of individual Pt atoms not only further promotes the separation and transport of carriers but also enhances the contact between water and the catalyst. All of these factors directly contribute to the superior activity of C60@MIL-125-NH2-Pt. This work provides a new perspective for constructing D-A supramolecular photocatalysts for enhanced charge separation and making full use of photoelectrons to realize efficient hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.