Abstract

This work describes the encapsulation of conducting polypyrrole (PPy) into electrospun TiO2 nanofibers to form PPy/TiO2 nanocomposites using V2O5 as an oxidant and sacrificial template via a simple vapor phase polymerization approach. The PPy/TiO2 nanocomposites could be used as nanoreactors for loading Pd nanocatalysts towards the catalytic reduction of p-nitrophenol by sodium borohydride (NaBH4) at ambient conditions. The Pd nanocrystals synthesized through the in situ reduction by the PPy/TiO2 matrix have a small size of only about 2.0 nm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR) and thermo-gravimetric analysis (TGA) results demonstrated that PPy/TiO2 and PPy/TiO2/Pd composite nanofibers were successfully synthesized. Pd nanoparticles supported on the PPy/TiO2 composite nanofibers exhibited good catalytic activity when they worked as catalysts for the reduction of p-nitrophenol. The apparent kinetic rate constant (Kapp) was calculated to be about 12.2 × 10−3 s−1. The protective PPy/TiO2 composite nanofibers render the Pd nanoparticles stable against poisoning by the product of the reaction, enabling the composite nanocatalysts to be recyclable when used over multiple cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.