Abstract

Photocatalytic reduction of CO2 to CO is a promising strategy for reducing atmospheric CO2 levels and storing solar radiation as chemical energy. Here, we demonstrate that a molecular catalyst [NiII(bpet)(H2O)2] successfully encapsulated into a highly robust and visible-light responsive metal–organic framework (Ru-UiO-67) to fabricate composite catalysts for photocatalytic CO2 reduction. The composite Ni@Ru-UiO-67 photocatalysts show efficient visible-light-driven CO2 reduction to CO with a TON of 581 and a selectivity of 99% after 20-h illumination, because of the facile electron transfer from Ru-photosensitizer to Ni(II) active sites in Ni@Ru-UiO-67 system. The mechanistic insights into photoreduction of CO2 have been studied based on thermodynamical, electrochemical, and spectroscopic investigation, together with density functional theory (DFT) calculations. This work shows that encapsulating molecular catalyst into photoactive MOF highlights opportunities for designing efficient, stable and recyclable photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.