Abstract

Platinum (Pt)-based nanoparticles (NPs) are widely used in many catalytic reactions benefiting from their inherent electronic surface properties. However, due to their high surface energy, they easily agglomerate and grow in size in catalytic reactions, resulting in significantly decreasing catalytic performance. To address this problem, encapsulating Pt-based NPs in porous materials to form core–shell structures or to physically isolate Pt-based NPs in pores is a highly efficient and promising strategy. In this review, the synthetic strategies, advantageous properties and catalytic applications of encapsulated Pt-based NPs are comprehensively summarized. We first describe the synthetic strategies of Pt-based NPs encapsulated in different porous materials, including metal–organic frameworks, covalent organic frameworks, zeolites, carbon materials and inorganic oxides. The advantageous properties of encapsulated Pt-based NPs such as enhanced stability, improved selectivity and accelerated electron transfer are then demonstrated. After that, the catalytic applications of encapsulated Pt-based NPs in thermal-, photo- and electro-catalysis are discussed. At the end of this review, we present our views on future developments and challenges in this direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.