Abstract

The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions. Here, the response of MSCs, encapsulated in alginate hydrogels and cultured for 22 d, is explored using three different regimes: single, continuous, and intermittent stimulation with IFNγ. Exposure to IFNγ leads to a decrease in the secretion of IL-10, which is cyclically countered by IFNγ weaning.Conditioned media collected at different stages of pulsatile stimulation show an immunomodulatory potential toward macrophages, which directly correlates with IL-10 concentration in media. To understand whether the correlation between cyclic stimulation of MSCs and other biological actions can be observed, the effect on endothelial cells is studied, showcasing an overall modest influence on tube formation. Overall, the results describe the response of encapsulated MSCs to unusual pulsatile simulation regimens, exploring encapsulated MSCs as a living on-demand release system of tailored secretomes with recoverable immunomodulatory action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call