Abstract

Heterojunctions composed of cobalt-based materials and carbon materials have been recognized as the efficient catalysts for peroxymonosulfate (PMS) activation to generate reactive oxygen species for the removal of environmental contaminants. However, the role of carbon materials in promoting the heterojunction systems has not been fully understood. This study synthesized a heterojunction material of graphene sheets encapsulating Co3O4 (GCO-500) through the pyrolysis of cobalt MOF and applied it to activate PMS for the removal of lomefloxacin. The results showed a high removal rate of 93.59 % with a degradation rate of k1 = 0.0156 min−1. Co3O4 clusters was encapsulated within ultrathin graphene sheets (<2 nm). DFT calculations revealed that graphene layers improve the electron transfer ability of Co3O4 and increased the d-band center of Co3O4 (−1.61 eV) that promote the adsorption of PMS on GCO-500 (−1.32 eV). In the meanwhile, organic pollutant was enriched in graphene layers with high adsorption energy (−13.08 eV), which greatly enhanced the degradation efficiency of pharmaceuticals. This study provides an effective catalyst for PMS activation and sheds light on the fundamental electronic-level understanding of cobalt-based and carbon heterojunction catalysts in PMS activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.