Abstract
The RNA bacteriophages of E. coli specifically encapsidate a single copy of the viral genome in a protein shell composed mainly of 180 molecules of coat protein. Coat protein is also a translational repressor and shuts off viral replicase synthesis by interaction with a RNA stem-loop containing the replicase initiation codon. We wondered whether the translational operator also serves as the viral pac site, the signal which mediates the exclusive encapsidation of viral RNA by its interaction with coat protein. To test this idea we measured the ability of lacZ RNA fused to the translational operator to be incorporated into virus-like particles formed from coat protein expressed from a plasmid. The results indicate that the operator-lacZ RNA is indeed encapsidated and that nucleotide substitutions in the translational operator which reduce the tightness of the coat protein-operator interaction also reduce or abolish encapsidation of the hybrid RNA. When coat protein is expressed in excess compared to the operator-lacZ RNA, host RNAs are packaged as well. However, elevation of the level of operator-lacZ RNA relative to coat protein results in its selective encapsidation at the expense of cellular RNAs. Our results are consistent with the proposition that this single protein-RNA interaction accounts both for translational repression and viral genome encapsidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.