Abstract

This work uses electrochemical quartz crystal microbalance methods to demonstrate the enantiospecific interaction between a magnetized surface and a chiral amino acid. The enantiospecific adsorption of chiral molecules (cysteine is used as a model) on a ferromagnetic surface is shown to arise from the kinetics of adsorption and not from a thermodynamic stabilization. Measurements of the Gibbs free energy of adsorption for different chiral forms of cysteine and different electrode magnetization states show no significant differences, whereas measurements of the adsorption and desorption kinetics reveal a strong dependence on the magnetization state of the electrode surface. In addition, the enantioselectivity is shown to depend sensitively on the solution pH and the charge state of the chiral adsorbate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call