Abstract
Methods to form carbon-carbon bonds efficiently and with control of stereochemistry are critical for the construction of complex molecules. Cross-coupling reactions are among the most efficient and widely used reactions to construct molecules, with reactions enabling the retention or installation of chirality as recent additions to this powerful toolbox. Sulfones are robust, accessible organic electrophiles that have many attractive features as cross-coupling partners; however, since the first example of their use in 1979, there have been no examples of their use in enantioselective, enantiospecific or entantioconvergent cross-couplings. The high acidity of sulfones makes it unclear whether this transformation is even possible outside tertiary systems. Here we report the enantiospecific cross-coupling of cyclic sulfones and Grignard reagents. Up to 99% chirality transfer is observed despite the strong basicity of the Grignard components. In situ monitoring reveals that the cross-coupling is kinetically competitive with competing deprotonation, resulting in a highly enantioselective transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.