Abstract

Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.