Abstract

The separation of thalidomide (TD) and its hydroxylated metabolites including their simultaneous enantioseparation was studied in capillary electrophoresis (CE) using four different randomly substituted charged cyclodextrin (CD) derivatives, the combinations of some of them with each other, and beta-CD. TD, as well as two metabolites recently found in incubations of human liver microsomes and human blood, 5-hydroxythalidomide (5-OH-TD) and one of the diastereomeric 5'-hydroxythalidomides (5'-OH-TD), are neutral compounds. Therefore, they were resolved using charged chiral selectors in CE. Two different separation modes (normal polarity and carrier mode) and two different capillaries (fused-silica and polyacrylamide-coated) were tested. Based on the behavior of the individual CDs, their designed combinations were selected in order to improve the separation selectivity and enantioselectivity. Under optimized conditions all three chiral compounds and their enantiomers were resolved simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.