Abstract

A chiral ligand exchange capillary electrophoresis (CLE-CE) method using Zn(II) as the central ion and l-4-hydroxyproline as the chiral ligand coordinating with γ-cyclodextrin (γ-CD) was developed for the enantioseparation of amino acids (AAs) and dipeptides. The effects of various separation parameters, including the pH of the running buffer, the ratio of Zn(II) to l-4-hydroxyproline, the concentration of complexes and cyclodextrins (CDs) were systematically investigated. After optimization, it has been found that eight pairs of labeled AAs and six pairs of labeled dipeptides could be baseline-separated with a running electrolyte of 100.0mM boric acid, 5.0mM ammonium acetate, 3.0mM Zn(II), 6.0mM l-hydroxyproline and 4.0mM γ-CD at pH 8.2. The quantitation of AAs and dipeptides was conducted and good linearity (r2≥0.997) and favorable repeatability (RSD≤3.6%) were obtained. Furthermore, the proposed method was applied in determining the enantiomeric purity of AAs and dipeptides. Meanwhile, the possible enantiorecognition mechanism based on the synergistic effect of chiral metal complexes and γ-CD was explored and discussed briefly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call