Abstract

Reactive oxygen species (ROS) are considered to be the key players in cell toxicity. However, cross talk between the enantioselective toxicity of pesticides, heavy metals, and ROS is poorly understood. To decipher the puzzle, the effects of copper (Cu) on the enantioselective ecotoxicity of the chiral pesticide dichlorprop (DCPP) to Scenedesmus obliquus were investigated. The results showed that the presence of DCPP and Cu, both individually and in combination, caused a sudden increase of ROS. This in turn stimulated the response of antioxidant defenses, impaired subcellular structure and physiological function, and finally resulted in cell growth inhibition. In the absence of Cu, ROS production after exposure to the herbicidally active (R)-enantiomer was higher than that of the (S)-enantiomer, suggesting a preference for an (R)-enantiomer-induced production of ROS. When DCPP and Cu were both added to algae simultaneously, (R)-DCPP preferentially induced production of ROS was observed. However, the enantioselective induced production of ROS was reversed when DCPP was mixed with Cu for 24 h prior to addition to the algae solution. It was also found that the generation of ROS, antioxidant response, and growth inhibition rate in Scenedesmus obliquus were all (R)-enantiomer preferentially induced. These findings implied that ROS play a primary role in chemical contaminant toxicity, and interactions between contaminants can tune the enantioselectivity of chiral herbicides, which should be considered in future risk assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.