Abstract

The heavy use of agrochemicals is considered a major factor contributing to the decline in wild honeybee populations. Development of low-toxicity enantiomers of chiral fungicides is the key to reducing the potential threats to honeybees. In this study, we evaluated the enantioselective toxic effects of triticonazole (TRZ) on honeybees and its molecular mechanisms. The results showed that after long-term exposure to TRZ, the content of thoracic ATP decreased significantly, by 41 % in R-TRZ treatments and by 46 % in S-TRZ treatments. Furthermore, the transcriptomic results indicated that S-TRZ and R-TRZ significantly altered the expression of 584 genes and 332 genes, respectively. Pathway analysis indicated that R- and S-TRZ could affect different genes expressed in GO terms and metabolic pathways, especially the transport GO terms (GO: 0006810) and pathways of alanine, aspartate and glutamate metabolism, drug metabolism - cytochrome P450, and pentose phosphate. Additionally, S-TRZ had a more pronounced effect on honeybee energy metabolism, disrupting a greater number of genes involved in the TCA cycle and glycolysis/glycogenesis, exerting a stronger effect on energy metabolic pathways, including nitrogen metabolism, sulfur metabolism, and oxidative phosphorylation. In summary, we recommend reducing the proportion of S-TRZ in racemate to minimize the threat to the survival of honeybees and protect the diversity of economic insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call