Abstract

The review presents exhaustive information for the last 5 years on the trends and methods of research, development, and application of enantioselective voltammetric sensors on the basis of new chiral materials for the recognition of enantiomers of biologically active and medicinal compounds. Enantioselective sensors on the basis of chiral Cu, Au, Ag, Pt, and Pd nanoparticles and single crystals, mesoporous metals with molecular imprints, single-wall carbon nanotubes, smart polymers, metal–organic frameworks and supramolecular assemblies, and chiral ionic liquids are considered. Examples of the recognition and determination of enantiomers in various samples and analytical characteristics of the proposed sensors are given. Problems and prospects of using enantioselective voltammetric sensors for the chiral recognition of optically active compounds are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call