Abstract

We report the first enantioselective total syntheses of the hasubanan alkaloid (-)-metaphanine and the norhasubanan alkaloid (+)-stephadiamine. Key features of these syntheses include diastereoselective oxidative phenolic coupling reaction and subsequent regioselective intramolecular aza-Michael reaction, which efficiently construct the hasubanan skeleton with the all-carbon quaternary stereogenic center at C13. Based on our hypothesis regarding the biosynthetic pathway of (+)-stephadiamine, we found that (-)-metaphanine is easily converted to (+)-stephadiamine via aza-benzilic acid type rearrangement reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.