Abstract

The akuammiline alkaloids are a structurally diverse class of bioactive natural products isolated from plants found in various parts of the world. A particularly challenging subset of akuammiline alkaloids are those that contain a methanoquinolizidine core. We describe a synthetic approach to these compounds that has enabled the first total syntheses of (+)-strictamine, (-)-2( S)-cathafoline, (+)-akuammiline, and (-)-Ψ-akuammigine. Our strategy relies on the development of the reductive interrupted Fischer indolization reaction to construct a common pentacyclic intermediate bearing five contiguous stereocenters, in addition to late-stage formation of the methanoquinolizidine framework using a deprotection-cyclization cascade. The total syntheses of (-)-Ψ-akuammigine and (+)-akuammiline mark the first preparations of akuammiline alkaloids containing both a methanoquinolizidine core and vicinal quaternary centers. Lastly, we describe the bioinspired reductive rearrangements of (+)-strictamine and (+)-akuammiline to ultimately provide (-)-10-demethoxyvincorine and a new analogue thereof.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call