Abstract

We report the enantioselective synthesis of atropisomeric benzamides employing catalytic electrophilic aromatic substitution reactions involving bromination. The catalyst is a simple tetrapeptide bearing a tertiary amine that may function as a Brønsted base. A series of tri- and dibrominations were accomplished for a range of compounds bearing differential substitution patterns. Tertiary benzamides represent appropriate substrates for the reaction since they exhibit sufficiently high barriers to racemization after ortho functionalization. Mechanism-driven experiments provided some insight into the basis for selectivity. Examination of the observed products at low conversion suggested that the initial catalytic bromination may be regioselective and stereochemistry-determining. A complex between the catalyst and substrate was observed by NMR spectroscopy, revealing a specific association. Finally, the products of these reactions may be subjected to regioselective metal-halogen exchange and trapping with I(2), setting the stage for utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.