Abstract

Atropisomeric anilides have received tremendous attention as a novel class of chiral compounds possessing restricted rotation around an N-aryl chiral axis. However, in sharp contrast to the well-studied synthesis of biaryl atropisomers, the catalytic asymmetric synthesis of chiral anilides remains a daunting challenge, largely due to the higher degree of rotational freedom compared to their biaryl counterparts. Here we describe a highly efficient catalytic asymmetric synthesis of atropisomeric anilides via Pd(II)-catalyzed atroposelective C-H olefination using readily available L-pyroglutamic acid as a chiral ligand. A broad range of atropisomeric anilides were prepared in high yields (up to 99% yield) and excellent stereoinduction (up to >99% ee) under mild conditions. Experimental studies indicated that the atropostability of those anilide atropisomers toward racemization relies on both steric and electronic effects. Experimental and computational studies were conducted to elucidate the reaction mechanism and rate-determining step. DFT calculations revealed that the amino acid ligand distortion is responsible for the enantioselectivity in the C-H bond activation step. The potent applications of the anilide atropisomers as a new type of chiral ligand in Rh(III)-catalyzed asymmetric conjugate addition and Lewis base catalysts in enantioselective allylation of aldehydes have been demonstrated. This strategy could provide a straightforward route to access atropisomeric anilides, one of the most challenging types of axially chiral compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.