Abstract
An enantioselective rhodium-catalyzed allylic alkylation of β,γ-unsaturated α-amino nitriles is described. This protocol provides a novel approach for the construction of β-stereogenic carbonyl derivatives via the catalytic asymmetric alkylation of a homoenolate equivalent. The particularly challenging nature of this transformation is highlighted by the fact that three modes of selectivity must be manipulated, namely regio- and enantioselectivity, in addition to geometrical control. The γ-stereogenic cyanoenamine products can be readily hydrolyzed in situ to afford the β-substituted carboxylic acids, which in turn provide expedient access to a number of related carbonyl derivatives. Additionally, control experiments indicate that the chiral rhodium-allyl intermediate facilitates the selective formation of the E-cyanoenamine products, which is critical since the Z-isomer affords significantly lower enantiocontrol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.