Abstract

Countercurrent chromatography (CCC) is a preparative separation technique that works with a liquid stationary phase. Biphasic liquid systems are needed to perform a separation. Since a chiral selector is required to perform enantiomer separations, special requirements are imposed in CCC. The chiral selector (CS) must be located in the stationary phase since partitioning with the mobile phase would cause losses of the valuable chiral selector in the mobile phase. Sulfated cyclodextrins and proteins were used as polar CS located in the polar stationary phase (reversed phase mode). Apolar CSs such as N-dodecyl-l-proline 3,5-dimethylanilide or Whelk-O selectors, quinine and quinidine derivatives, cellulose or amylose apolar derivatives were used located in the apolar stationary phase (normal phase mode). The special CCC displacement method called pH-zone refining was found useful in the increase of the loading capacity for cellulose, quinine, quinidine, and proline-derived selectors. Dual and multidual mode uses of CCC could produce an increase in peak separation thereby broadening the applicability of moderately enantioselective CSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.