Abstract

Enantioselective protonation is a potent and efficient way to construct chiral carbons. Here we report details of the reaction using Lewis acid-assisted chiral Brønsted acids (chiral LBAs). The 1:1 coordinate complex of tin tetrachloride and optically active binaphthol ((R)- or (S)-BINOL) can directly protonate various silyl enol ethers and ketene disilyl acetals to give the corresponding α-aryl ketones and α-arylcarboxylic acids, respectively, with high enantiomeric excesses (up to 98% ee). A catalytic version of enantioselective protonation has also been achieved using stoichiometric amounts of 2,6-dimethylphenol and catalytic amounts of monomethyl ether of optically active BINOL in the presence of tin tetrachloride. This protonation is also effective for producing α-halocarbonyl compounds (up to 91% ee). DFT calculations on the B3LYP/LANL2DZ level show that the conformational structure of the chiral LBA and the orientation of activated proton on (R)-BINOLs are important for understanding the absolute stereochemistry of the products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.