Abstract

trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi-Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.