Abstract
Ureas of chiral diamines are prominent features of therapeutics, chiral auxiliaries, and intermediates in complex molecule synthesis. Although many methods for diamine synthesis are available, metal-free enantioselective alkene functionalizations to make protected 1,2- and 1,3-diamines from simple achiral starting materials are rare, and a single reagent that accesses a cross-section of each congener with high enantiomeric excess is not available. We describe a method to synthesize enantioenriched cyclic 5- and 6-membered ureas from allylic amines and an isocyanate using a C2-symmetric BisAmidine (BAM) catalyst that delivers N-selectivity from an ambident sulfonyl imide intermediate, overcoming electronic and steric deactivation at nitrogen. The geometry of 1,2-disubstituted alkenes is correlated to 5-exo and 6-endo cyclizations without altering alkene face selectivity, which is unexpectedly opposite that observed with O-nucleophiles. Straightforward product manipulations to diamine and imidazolidinone derivatives are underscored by the synthesis of an NK1 antagonist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.