Abstract
Sublethal exposure to neonicotinoids affects honey bee olfaction, but few studies have investigated the sublethal effects of the enantioselective neonicotinoid dinotefuran on honey bee olfaction. This study assessed the sublethal olfactory toxicity of dinotefuran enantiomers to honey bees. Compared to R-dinotefuran, S-dinotefuran had higher acute oral toxicity, sucrose sensitivity effects, octopamine concentrations, lower learning ability, and memory effects on honey bees. High-throughput circular RNA sequencing of the honey bee brain revealed that R-dinotefuran caused more gene regulatory changes than S-dinotefuran. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that the SERCA, Kca, and Maxik genes may be related to the enantioselective effects of dinotefuran isomers on honey bee olfaction. These results indicated that the current ecotoxicological safety knowledge about chiral dinotefuran effects on honey bees should be amended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.