Abstract

The hydrophobic organic solvents/water biphasic system had been always used in the traditional enantioselective liquid-liquid extraction (ELLE). In recent years, aqueous biphasic systems (ABSs) are considered as a promising method used in the ELLE. In the present work, a recyclable ABS composed of a temperature-responsive polymer poly(MAH-β-CD-co-NIPAAm) (PN-CD) and a pH-responsive polymer poly(AA-DMAEMA-BMA) (PADB) was employed in the enantioseparation of tryptophan enantiomers. The polymer PN-CD acted as not only the phase-forming component but also the chiral selector, which can be recycled by changing the temperature. The polymer PADB can be used as the phase-forming component, which can also be recycled by adjusting the pH. The phase behaviors of this PN-CD/PADB ABS had been studied. The influencing parameters were studied for this chiral separation process, including the polymer concentration, initial tryptophan concentration, extraction temperature, and system pH. The maximum separation factor (α) of 1.42 was obtained by one-step extraction under the optimal conditions. Meanwhile, the distribution coefficients of L-tryptophan (L-Trp) and D-tryptophan (D-Trp) were 2.79 and 1.96, respectively. This study develops a green and sustainable strategy for enantioseparation by using the ELLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.