Abstract
Enantioselective labeling of important bioactive molecules in complex biological environments by artificial receptors has drawn great interest. From both the slight difference of enantiomers' physicochemical properties and inherently complexity in living organism point of view, it is still a contemporary challenge for preparing practical chiral device that could be employed in the model animal due to diverse biological interference. Herein, we introduce γ-cyclodextrin onto graphene oxide for fabricating γ-cyclodextrin and graphene oxide assemblies, which provided an efficient nanoplatform for chiral labelling of D-phenylalanine with higher chiral discrimination ratio of KD/KL = 8.21. Significantly, the chiral fluorescence quenching effect of this γ-CD-GO nanoplatform for D-phenylalanine enantiomer in zebrafish was 7.0-fold higher than L-isomer, which exhibiting real promise for producing practical enantio-differentiating graphene-based systems in a complex biological sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.