Abstract

Chiral carboxylic acids are important compounds because of their prevalence in pharmaceuticals, natural products and agrochemicals. Asymmetric hydrogenation of α,β-unsaturated carboxylic acids has been widely recognized as one of the most efficient synthetic approaches to afford such compounds. Although related asymmetric hydrogenation of di- and trisubstituted unsaturated acids with noble metals is well established, asymmetric hydrogenation of challenging tetrasubstituted α,β-unsaturated carboxylic acids is rarely reported. We demonstrate enantioselective hydrogenation of cyclic and acyclic tetrasubstituted α,β-unsaturated carboxylic acids via cobalt(II) catalysis. This protocol showed broad substrate scope and gave chiral carboxylic acids in good yields with excellent enantiocontrol (up to 98 % yield and 99 % ee). Combined experimental and computational mechanistic studies support a CoII catalytic cycle involving migratory insertion and σ-bond metathesis processes. DFT calculations reveal that enantioselectivity may originate from the steric effect between the phenyl groups of the ligand and the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call