Abstract

A new reaction kinetic approach was used to describe the enantioselective hydrogenation of ethyl pyruvate over cinchona-Pt catalyst. The above reaction was considered as the sum of two parallel reactions: (i) racemic hydrogenation resulting in R- and S-product in equal amount and (ii) enantioselective hydrogenation leading to the exclusive formation of one of the two optically isomers. New terms such as accdiff and k e/k r (where k e and k r are the rate constants of the enantioselective and racemic hydrogenation, respectively) were introduced to characterize the relationship between the enantioselective and the racemic hydrogenation reactions. Results obtained show that the formation of R-product is rate accelerated, while the formation of S-product is decelerated. The results indicate also that the overall rate increase is a kinetic phenomenon and cannot be attributed to the suppression of the poisoning effect of CO or oligomers formed from ethyl pyruvate. The strong rate acceleration effect of achiral tertiary amines (ATAs) added to the reaction mixture was attributed to the decrease of the loss of modifier during the hydrogenation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call