Abstract

Flavin has long been known to function as a single electron reductant in biological settings, but this reactivity has rarely been observed with flavoproteins used in organic synthesis. Here we describe the discovery of an enantioselective radical dehalogenation pathway for α-bromoesters using flavin-dependent 'ene'-reductases. Mechanistic experiments support the role of flavin hydroquinone as a single electron reductant, flavin semiquinone as the hydrogen atom source, and the enzyme as the source of chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.