Abstract

Two sets of styrenes possessing various substituents either in ortho or para position were hydroformylated in the presence of ‘in situ’ catalyst formed from PtCl2[(R)-BINAP] and tin(II) chloride. The reversal of the absolute configuration of the preferred enantiomers was observed using both sets of substrates by the variation of the reaction temperature in the range of 40–100 °C. In case of the 4-substituted styrenes, the reversal temperature of the enantioselectivity shows correlation with the Hammett substituent constants, i.e., with the electron donor or electron acceptor properties of the para-substituents. This phenomenon was explained by the reversible formation of the Pt-branched alkyl intermediates, leading to the corresponding (R)- and (S)-enantiomers of 2-arylpropanals.Strong substituent effect on the regioselectivity was observed in the hydroformylation of 2-substituted styrenes: the presence of substituents characterised by larger steric parameter resulted in the highly favoured formation of the linear aldehyde. For instance, regioselectivities of 45%, 22% and 7% towards branched aldehyde were obtained with styrene, 2-fluoro- and 2-bromostyrene, respectively, at 80 °C reaction temperature. In addition to the characteristic change of regioselectivity, the reversal of absolute configuration as a function of reaction temperature was also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.