Abstract

A general protocol is described for inducing enantioselective halolactonizations of unsaturated carboxylic acids using novel bifunctional organic catalysts derived from a chiral binaphthalene scaffold. Bromo- and iodolactonization reactions of diversely substituted, unsaturated carboxylic acids proceed with high degrees of enantioselectivity, regioselectivity, and diastereoselectivity. Notably, these BINOL-derived catalysts are the first to induce the bromo- and iodolactonizations of 5-alkyl-4( Z)-olefinic acids via 5- exo mode cyclizations to give lactones in which new carbon-halogen bonds are created at a stereogenic center with high diastereo- and enantioselectivities. Iodolactonizations of 6-substituted-5( Z)-olefinic acids also occur via 6- exo cyclizations to provide δ-lactones with excellent enantioselectivities. Several notable applications of this halolactonization methodology were developed for desymmetrization, kinetic resolution, and epoxidation of Z-alkenes. The utility of these reactions is demonstrated by their application to a synthesis of precursors of the F-ring subunit of kibdelone C and to the shortest catalytic, enantioselective synthesis of (+)-disparlure reported to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.