Abstract

The phenylpyrazole chiral insecticides, including the widely used fipronil, ethiprole, and flufiprole, have generated a worldwide interest due to their environmental toxicity. However, up to now,only few studies focused on their their potential endocrine-disrupting effects (EDEs). In this study, we investigated the endocrine hormonal disorder caused by the fipronil, ethiprole, and flufiprole enantiomers in vitro and in silico approach. Results of the luciferase reporter assay indicated that the enantiomers of fipronil, ethiprole, or flufiprole have shown stereoselective endocrine-disrupting effects. S-(−)-ethiprole and S-(−)-flufiprole have anti-thyroidal disorder effects whereas R-(−)-fipronil, R-(+)-ethiprole, and R-(+)-flufiprole showed anti-estrogenic disorder effects. The results of the molecular dynamics simulations revealed that the happened EDEs could be partially attributed to the enantioselective specific receptor binding affinities. It also suggested that Vander Waals interactions plays an important role in the binding procedure. This study could provide helpful information for the explanation of enantioselectivity in the EDEs of chiral phenylpyrazole pesticides at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.