Abstract

The total synthesis of (+)-asteriscanolide (1) starting from 2-bromo-4,4-dimethylcyclopentenone has been accomplished. The synthetic route features two key steps. The first step is an unprecedented Michael−Michael reaction sequence that involves a heteronucleophile and proceeds with complete asymmetric induction. The two five-membered rings of the target molecule are thereby generated enantioselectively in a single laboratory step. The second step is based on utilization of ring-closing metathesis to provide an eight-membered ring in which a conjugated 1,3-diene unit resides. Other features of the synthetic stratagem involve the utilization of singlet oxygen in a regiocontrolled ene reaction, the fully stereocontrolled hydrogenation of a dienone, and a chemoselective ruthenium tetraoxide oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.