Abstract
Palladium-catalyzed carbonylation reactions are efficient methods for synthesizing valuable molecules. However, realizing a carbonylation with excellent yield and chemo-, regio-, and enantioselectivities by classical low-valent palladium catalysis is highly challenging. Herein, we describe an enantioselective carbonylation reaction using a high-valent palladium catalysis strategy and employing a chiral sulfoxide phosphine (SOP) ligand. This double aminocarbonylation reaction begins with the formation of a carbamoylpalladium(II) species, which undergoes enantioselective oxidative addition with a cyclic diaryliodonium salt to generate a palladium(IV) intermediate, followed by a second CO insertion and reductive elimination. The mechanism has been illustrated with experimental and computational studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.