Abstract

The first enantioselective [12 + 2] cycloaddition has been developed for the construction of a chiral cycl[3.2.2]azine core, a tricyclic moiety with a central ring-junction nitrogen atom, by an operationally simple one-step organocatalytic process. The reaction concept builds upon aminocatalytically generated 12π-components derived from 5H-benzo[a]pyrrolizine-3-carbaldehydes reacting with different electron-deficient 2π-components and affording the complex scaffold of benzo[a]cycl[3.2.2]azine (indolizino[3,4,5-ab]isoindole) with excellent enantio- and diastereoselectivity in good yields. The developed reaction is robust toward diverse substituent patterns and has been extended to different classes of electron-deficient 2π-components by minor variations in reaction setup. The obtained [12 + 2] cycloadducts are electron-deficient in nature, and their reaction with nucleophiles have been demonstrated. The enantioselective [12 + 2] cycloaddition with α,β-unsaturated aldehydes as the electron-deficient 2π-components relies upon an unconventional, simple aminocatalyst. In order to understand the high stereoselectivity of the [12 + 2] cycloaddition for this simple catalyst, combined experimental and computational investigations were performed. The investigations point to activation of both the 5H-benzo[a]pyrrolizine-3-carbaldehyde and the α,β-unsaturated aldehyde by the aminocatalyst and that the reaction proceeds by a stepwise cycloaddition, where especially the ring-closure is crucial for the stereochemical outcome. For other electron-deficient 2π-components, such as α,β-unsaturated ketoesters and nitroolefins, a more sterically demanding aminocatalyst has been applied and the corresponding [12 + 2] cycloadducts are obtained with excellent stereoselectivity. The [12 + 2] cycloaddition with vinyl sulfones afforded fully unsaturated systems, which display photoluminescence properties and for which quantum yields have been evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.