Abstract

Silyl ketene imines derived from a variety of α-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of a chiral phosphoramide, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note are the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. Linear aliphatic aldehydes did react with good diastereo- and enantioselectivity in the presence of nBu4N(+)I(-), but branched aldehydes were much less reactive. Semiempirical calculations provided a rationalization of the observed diastereo- and enantioselectivity via open transitions states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.