Abstract

The enantioselective conjugate addition of dialkylzinc or diphenylzinc to enones was catalyzed by a copper(I)-axially chiral binaphthylthiophosphoramide or binaphthylselenophosphoramide ligand system at room temperature (20 degrees C) or 0 degrees C, affording the Michael adducts in high yields with excellent ee for cyclic and acyclic enones. The enantioselectivity and reaction rate achieved here are one of the best results yet for the Cu-catalyzed conjugate addition to enones. It was revealed that this series of chiral phosphoramides was a novel type of S,N-bidentate ligands on the basis of (31)P NMR and (13)C NMR spectroscopic investigations. The mechanism of this asymmetric conjugate addition system has been investigated as well. We found that the acidic proton of phosphoramide in these chiral ligands play a significant role in the formation of the active species. A bimetallic catalytic process has been proposed on the basis of previous literature. The linear effect of product ee and ligand ee further revealed that the active species is a monomeric Cu(I) complex bearing a single ligand [Cu(I):ligand 1:1].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.