Abstract

Adenosine triphosphate (ATP) and other nucleotides can be irreversibly bound to the metal-organic framework (MOF) MIL-101(Cr). Analysis of X-ray diffraction data suggests that the location of the adsorbed ATP molecule is in proximity of the Cr3 clusters. Solid-state NMR and DFT calculations indicate that ATP is bound to MIL-101(Cr) through linkages of the terminal phosphate group with Cr(III) of the framework. In the presence of Cu(II) ions, the MOF-supported nucleotides can function as stable and reusable enantioselective heterogeneous catalysts for reactions like Diels-Alder and Michael addition. Compared to the corresponding homogeneous nucleotide-based artificial metalloenzymes (ArMs), the MOF-supported nucleotide-based ArMs exhibit significantly enhanced activity and selectivity in certain cases, demonstrating their potential as a new class of enantioselective heterogeneous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.