Abstract
Dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid; DCPP], an important phenoxyalkanoic acid herbicide (PAAH), is extensively used in the form of racemic mixtures (Rac-DCPP), and the environmental fates of both DCPP enantiomers [(R)-DCPP and (S)-DCPP] mediated by microorganisms are of great concern. In this study, a bacterial strain Sphingopyxis sp. DBS4 was isolated from contaminated soil and was capable of utilizing both (R)-DCPP and (S)-DCPP as the sole carbon source for growth. Strain DBS4 preferentially catabolized (S)-DCPP as compared to (R)-DCPP. The optimal conditions for Rac-DCPP degradation by strain DBS4 were 30 °C and pH 7.0. In addition to Rac-DCPP, other PAAHs such as (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid, 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, and 2,4-dichlorophenoxyacetic acid butyl ester could also be catabolized by strain DBS4. Bioremediation of Rac-DCPP-contaminated soil by inoculation of strain DBS4 exhibited an effective removal of both (R)-DCPP and (S)-DCPP from the soil. Due to its broad substrate spectrum, strain DBS4 showed great potential in the bioremediation of PAAH-contaminated sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.