Abstract

The enantioselective bioactivity, acute toxicity and stereoselective degradation of the chiral triazole fungicide flutriafol in vegetables were investigated for the first time using the (R)-, (S)- and rac-flutriafol. The order of the bioactivity against five target pathogens (Rhizoctonia solani, Alternaria solani, Pyricularia grisea, Gibberella zeae, Botrytis cinerea) was found to be (R)-flutriafol>rac-flutriafol>(S)-flutriafol. The fungicidal activity of (R)-flutriafol was 1.49–6.23 times higher than that of (S)-flutriafol. The (R)-flutriafol also showed 2.17–3.52 times higher acute toxicity to Eisenia fetida and Scenedesmus obliquus than (S)-flutriafol. The stereoselective degradation of flutriafol in tomato showed that the active (R)-flutriafol degraded faster, resulting in an enrichment of inactive (S)-form, and the half-lives were 9.23 d and 10.18 d, respectively. Inversely, the (S)-flutriafol, with a half-life of 4.76 d, was preferentially degraded in cucumber. In conclusion, the systemic assessments of the triazole fungicide flutriafol stereoisomers on the enantioselective bioactivity, acute toxicity and environmental behavior may have implications for better environmental and ecological risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call