Abstract

The application of chiral interlocked host molecules for discrimination of guest enantiomers has been largely overlooked, which is surprising given their unique three-dimensional binding cavities capable of guest encapsulation. Herein, we combined the stringent linear geometric interaction constraints of halogen bonding (XB), the noncovalent interaction between an electrophilic halogen atom and a Lewis base, with highly preorganized and conformationally restricted chiral cavities of [2]rotaxanes to achieve enantioselective anion recognition. Representing the first detailed investigation of the use of chiral XB rotaxanes for this purpose, extensive 1H NMR binding studies and molecular dynamics (MD) simulation experiments revealed that the chiral rotaxane cavity significantly enhances enantiodiscrimination compared to the non-interlocked free axle and macrocycle components. Furthermore, by examining the enantioselectivities of a family of structurally similar XB [2]rotaxanes containing different combinations of chiral and achiral macrocycle and axle components, the dominant influence of the chiral macrocycle in our rotaxane design for determining the effectiveness of chiral discrimination is demonstrated. MD simulations reveal the crucial geometric roles played by the XB interactions in orientating the bound enantiomeric anion guests for chiral selectivity, as well as the critical importance of the anions' hydration shells in governing binding affinity and enantiodiscrimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.