Abstract

Highly enantioselective bisguanidinium-catalyzed tandem rearrangements of acylsilanes are reported. The acylsilanes were activated via an addition of fluoride on the silicon to form a penta-coordinate anionic silicate intermediate. The silicate then underwent alkyl or aryl group migration from the silicon atom to the neighboring carbonyl carbon atom (1,2-anionotropic rearrangement), followed by [1,2]-Brook rearrangement to provide the secondary alcohols in high yields with excellent enantioselectivities (up to 95% ee). The isolation of an α-silylcarbinol intermediate as well as DFT calculations revealed that the 1,2-anionotropic rearrangement occurred via a bisguanidinium silicate ion pair, which is the stereodetermining step. The chiral center formed is then retained without inversion through the subsequent [1,2]-Brook rearrangement. Crotyl acylsilanes were smoothly transformed into homoallylic linear crotyl alcohols with retention of E/Z geometry, and no branched alcohols were detected. This clearly suggested that the 1,2-anionotropic rearrangement occurred through a three-membered instead of a five-membered transition state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.