Abstract

Four new tetranuclear iron(III) complexes of formula [{Fe(L)(2)}(3)Fe], 1-4, have been prepared by reacting [Fe(ClO(4))(3)].6H(2)O with H(2)L in methanol. Here, L(2-) is the deprotonated form of N-(2-hyrdoxybenzyl)-l-valinol (H(2)L(1)), N-(2-hyrdoxybenzyl)-l-leucinol (H(2)L(2)), N-(5-chloro-2-hyrdoxybenzyl)-l-leucinol (H(2)L(3)), and N-(2-hyrdoxybenzyl)-l-phenylalaninol (H(2)L(4)). The complexes are prepared in an enantiomeric pure form. The complexes have been characterized with the help of IR, UV-vis, circular dichroism (CD), (1)H, and elemental analyses. The complex [{Fe(L(2))(2)}(3)Fe].CH(3)OH.2H(2)O, 2.CH(3)OH.2H(2)O, crystallizes in enantiomeric pure form containing a propeller-like Fe(4)O(6) core. (1)H and CD spectral studies of the four species are consistent with the structural similarities of the complexes in solution. Variable-temperature magnetic susceptibility of one case shows an intramolecular antiferromagnetic coupling between the Fe(III) ions. Magnetic measurements are in accord with the S = 5 ground state and suggest single molecular magnet behavior. The magnetic exchange coupling constant between the iron centers within the molecule is interpreted using broken-symmetry density functional theory calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call