Abstract

Methyl- and phenyllithium aggregates with enantiopure anisyl fencholate units form after reaction of organolithium reagent with (+)-anisyl fenchol in hydrocarbon and some ethereal solvents. These carbanionic aggregates are characterized by X-ray crystal analyses and exhibit both 3:1 stoichiometry and distorted cubic Li4O3C1 cores, in which three lithium ions coordinate the carbanion (i.e., methylide or phenylide). These three lithium ions define a Lewis acidic surface (Li3), binding the carbanion and expanding with the steric demand of the carbanion (i.e., from Me: 2.62 A2, over n-Bu: 2.65 A2 (previous work) to Ph: 2.79 A2). Methylation and phenylation reactions of various prochiral aldehydes employing these methyllithium and phenyllithium aggregates yield alcohols with up to 44% ee. To rationalize the formation of the mixed (carb-)anionic aggregates, aggregate formation energies, describing co-condensations of RLi (R = Me, Ph, n-Bu) and lithium fencholates, are computed for the 3:1 and 2:2 stoichiometrie...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call