Abstract

The use of peptides that target cancer cells and induce anticancer activities through various mechanisms is developing as a potential anticancer strategy. KUD983, an enantiomerically pure β-dipeptide derivative, displays potent activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells with submicromolar IC50. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The levels of nuclear and total c-Myc protein, which could increase the expression of both cyclin D1 and cyclin E, were profoundly inhibited by KUD983. Furthermore, it inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways, the key signaling in multiple cellular functions. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly rescued KUD983-induced caspase activation but did not blunt the inhibition of mTOR/p70S6K/4E-BP1 signaling cascade suggesting the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was enhanced with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Notably, KUD983 induced autophagic cell death using confocal microscopic examination, tracking the level of conversion of LC3-I to LC3-II and flow cytometric detection of acidic vesicular organelles-positive cells. In conclusion, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways regulated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may explain KUD983-induced anti-HRPC mechanism.

Highlights

  • Carcinoma of the prostate is one of the most frequently diagnosed cancers in men

  • The phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative regulator of phosphoinositide 3-kinase (PI3K)/ Akt/mammalian target of rapamycin (mTOR) signaling, has been originally discovered as a tumor suppressor mutated and lost in various cancers [7] and the consequential increased PI3K activity is associated with a high Gleason score and with advanced pathological stage disease, suggesting a pivotal role of PI3K pathway in hormone-refractory prostate cancer (HRPC) [8, 9]

  • The analysis of fluorescence intensity and the population distribution showed that a high proportion of the lowernumbered generations retained the fluorescence after the exposure of PC-3 cells to both KUD983 (1 μM) and KUD984 (10 μM); the proliferation indices were significantly reduced by both compounds (Figure 1B)

Read more

Summary

Introduction

Carcinoma of the prostate is one of the most frequently diagnosed cancers in men. With adequate treatment, the 5-year relative survival rate of localized and regional prostate cancers is 100% in the United States; the rate drops to less than 30% if a distant metastasis occurs at the time of diagnosis [1]. The growth of hormone-refractory prostate cancer (HRPC) occurs after an 18- to 24-month treatment [2]. The phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathway is always constitutively activated in advanced stages of prostate cancer [5, 6]. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative regulator of PI3K/ Akt/mTOR signaling, has been originally discovered as a tumor suppressor mutated and lost in various cancers [7] and the consequential increased PI3K activity is associated with a high Gleason score and with advanced pathological stage disease, suggesting a pivotal role of PI3K pathway in HRPC [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call