Abstract

Necroptosis is a form of programmed cell death that contributes to the pathophysiology of multiple diseases. Development of small-molecule anti-necroptosis agents has great promising clinical therapeutic relevance. The benzothiazole compounds were discovered by our group from an in-house fluorine-containing compound library as potent necroptosis inhibitors. Herein, a chiral dimethylcyclopropyl benzothiazole necroptosis inhibitor was developed and the enantiomeric profiling resulted that the (S) form was generally more potent than the (R) counterpart in 2 ~ 4-fold toward cell necroptosis, receptor-interacting protein (RIP) kinases 1 and 3. The chiral compounds could significantly inhibit the expression of the phosphorylation of RIPK1, RIPK3 and MLKL in necroptotic cells. The molecular modelling studies predicted the binding modes of the enantiomers with RIP and explained their activity differences, guiding further rational design of the chiral necroptosis inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.