Abstract

This study describes two bioanalytical methods for the quantitation of the two methadone enantiomers in dried matrix spots using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) and high performance supercritical chromatography tandem mass spectrometry (HPSFC-MS/MS). Dried matrix spots were obtained by spotting 10 µL of each sample fluid on a Whatman paper. Methadone and its main metabolite, EDDP, were extracted with 100 µL methanol and subsequently injected into the LC-MS/MS and SFC-MS/MS systems. Enantiomeric separation was achieved with AGP-column for the LC conditions and with Chiralpak IH-3 in SFC. The two methods were fully validated and 93 post-mortem samples were analysed with both analytical methods. Results from validation parameters and results obtained for all post-mortem samples were compared with a significant spearman correlation of rs = 0.9978 for R-methadone and rs = 0.9981 for S-methadone. The LC method provided better results in terms of uncertainty, retention factor and resolution, whereas SFC provides better sensitivity, with lower LOD. Median R-/S-methadone ratio in peripheral blood was found equal to 1.60 (N = 32), varying from 0.79 to 4.23. The reported values were in good agreement with previously published results.Based on the results obtained here, SFC-MS/MS can be considered a reliable alternative to the widely used LC-MS/MS for the quantitation of methadone enantiomers in bioanalysis and should be evaluated for other bioanalytical methods. Both methods can be easily and quickly used in toxicological routine analysis for the methadone quantitation in human fluids matrices, even if considering that the polysaccharide coated column IH-3 used in SFC does not allow the enantiomeric EDDP separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.