Abstract
Enantiomeric compositions of three 2-arylpropionic acid (2-APA) drugs, ibuprofen, naproxen, and ketoprofen, were monitored in a membrane bioreactor (MBR) treating municipal effluent in a small rural town in Australia. Specific enantiomers were determined as amide diastereomers using the chiral derivatizing reagent, (R)-1-phenylethylamine (PEA), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The six individual enantiomers were quantified by isotope dilution and the enantiomeric fractions (EFs) were determined. Over four separate sampling events, ibuprofen EF ranged from 0.88 to 0.94 (median 0.93) in the influent and 0.38 to 0.40 (median 0.39) in the effluent. However, no significant change in ketoprofen EF was observed, with influent EFs of 0.56-0.60 (median 0.58) and effluent EFs 0.54-0.68 (median 0.56). This is the first report of enantiospecific analysis of ketoprofen in municipal wastewater and it is not yet clear why such different behavior was observed compared to ibuprofen. Naproxen EF was consistently measured at 0.99 in the influent and ranged from 0.86 to 0.94 (median 0.91) in the effluent. This study demonstrates that EF is a relatively stable parameter and does not fluctuate according to concentration or other short-term variables introduced by sampling limitations. The enantiospecific analysis of chiral chemicals presents a promising approach to elucidate a more thorough understanding of biological treatment processes and a potential tool for monitoring the performance of key biological pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.