Abstract

This paper describes enantiomer separation using four kinds of chiral stationary phases (CSPs) where quaternary ammonium surfactants containing l-valine diamide moieties into long alkyl chains were bound to silicagel supports by reversed phase liquid chromatography. Our aim was to examine hydrogen bonding association of the chiral moiety in hydrophobic phase brought about by aggregation of the micelle-forming surfactants on the surface. The following CSPs were thus derived from the vinyl-terminated chiral surfactants via hydrosilylation: CSP 1 from N-[3-(10-undecenoyl- l-valylamino)propyl]- N, N, N-trimethylammonium bromide, CSP 2 from N-[6-(10-undecenoyl- l-valylamino)hexyl]- N, N, N-trimethyl-ammonium bromide, CSP 3 from N-[3-(10-undecenoyl- l-valylamino)propyl]- N-octadecanyl- N, N-dimethyl-ammonium bromide and CSP 4 from N-[6-(10-undecenoyl- l-valylamino)hexyl]- N-octadecanyl- N, N-dimethylammonium bromide. The degree of hydrophobicity in the interfacial phase was observed by measuring pyrene fluorescence in aqueous media including an organic modifier. Retention of racemic N-acylleucine isopropyl esters was highest in CSP 4, followed by 3, 2, and 1. Largest α values toward enantiomer separation were observed for CSP 4 where the chiral moieties were kept through a hexamethylene unit apart from the polar head groups and to which another long alkyl chain was attached, as compared with those for CSP 4. In CSP 4, the chiral moiety to interact with enantiomeric solutes should be buried into the interfacial phase deeply in more extent than CSP 3. In a similar manner, CSP 2 has more effective for enantiomer separation than CSP 1. The interfacial phase of these CSPs was easily exposed to the bulk phase because of the affinity between the bulk phase and the polar head groups as well as their electrostatic repulsion. However, degree of the enantiomer separation can be controlled by the depth of the chiral moiety in the hydrophobic interfacial phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.